メニュー
yu-to
管理者
本ブログを運営しているyu-toと申します。

統計学に関する記事を基礎、応用、実践に分けて投稿していきます。
高校数学に関する記事も多く投稿しているので、イチから学びたい社会人にもおすすめです。
カテゴリー

【公務員試験対策】『数的推理』比・割合

  • URLをコピーしました!

これから公務員試験数学範囲の勉強を始める方へ

まずは、『範囲と対策方法』を知りましょう!

目次

数的推理(比・割合)

割合とは、もとにする量に対して、比べられる量がもとにする量の何倍にあたるかを表したものです。

例えば、「A が \(100\) に対して B が \(30\) 」のように表し、この割合を表すために「百分率(%)」や「歩合」を使います。

上の例で言えば、B は A の \(30\) %や \(3\) 割と言います。

比とは、単純に \(2\) つ以上の量を整数の比に表すところに特徴があります。

上の例を用いて、「AとBを比べると、\(100:30\) より簡単な整数で \(10:3\)」というように表します。

どちらも、2つ以上の量を比べるという点で同じですし、「\(10:3\) の比の値 \(10/3\) は割合となります。」

実際に比や割合を用いた問題を解いてみましょう!

比・割合(問題)

ある学校の \(3\) 年生は、生徒数が \(200\) 人以下で、男女比は、男子 : 女子 \(=8:7\) 、志望別に見ると、文系志望 : 理系志望 \(=6:5\) である。このとき、文系志望の男子と理系志望の女子との人数の差として、正しいのはどれか。

1. \(7\) 人
2. \(9\) 人
3. \(11\) 人
4. \(13\) 人
5. \(15\) 人

比・割合(解説)

男子:女子 \(=8:7\) より

生徒数が \(15\) 人なら男子が \(8\) 人で、女子が \(7\) 人
生徒数が \(30\) 人なら男子が \(16\) 人で、女子が \(14\) 人
生徒数が \(45\) 人なら男子が \(24\) 人で、女子が \(21\) 人

のように、生徒数は \(15\) (\(=7+8\))の倍数であることがわかります。

同様に考えると、文系志望:理系志望 \(=6:5\) より、生徒数は \(11\) (\(=6+5\)) の倍数であることがわかる。

つまり、生徒数は \(11\) の倍数かつ \(15\) の倍数、言い換えると、生徒数は \(11\) と \(15\) の公倍数である。

\(11\) と \(15\) の最小公倍数は、\(11\times 15=165\) である。

生徒数は \(200\) 人以下なので、生徒数は \(165\) 人である。

そうすると、男子の人数は、

 \(165\times\displaystyle\frac{8}{8+7}=88\) (人)

女子の人数は、

 \(165\times\displaystyle\frac{7}{8+7}=77\) (人)

文系志望は、

 \(165\times\displaystyle\frac{6}{6+5}=90\) (人)

理系志望は、

 \(165\times\displaystyle\frac{5}{6+5}=75\) (人)

文系志望の男子の数を \(x\)、理系志望の女子の数を \(y\) とし、表にすると、

文系志望理系志望合計
男子\(x\)\(88-x\)\(88\)
女子\(77-y\)\(y\)\(77\)
合計\(90\)\(75\)\(165\)

よって、

 \(x+(77-y)=90\)

 \(x-y=13\)

したがって、正答は \(4\) である。

おわりに

さいごまで読んでいただきありがとうございました!

  • 大学受験数学で困っている方
  • 公務員試験の数学で困っている方
  • 統計学(統計検定)の勉強で困っている方

個人家庭教師やってるので、ぜひコメントやXでご連絡ください。(Xはこちら

私自身、数学に関して順風満帆に理解できてきたわけではありませんでした。

周りを見渡せば数学の天才がゴロゴロいて、そんな人たちに比べれば私は足元にも及びませんでした。

だからこそ、わからない、理解できない方の気持ちを少しはわかってあげられると自負しております。

数学に困っている方の一助になれれば幸いです。

ご連絡お待ちしております。

  • URLをコピーしました!

質問や感想はコメントへ!

コメントする

CAPTCHA


目次