メニュー
スマイルゼミ
カテゴリー
yu-to
オンライン家庭教師/ブログ運営
本ブログを運営しているyu-toと申します。

勉強は”孤独”です。
塾に行っていても、友達と勉強していても、最後はどれだけ孤独と戦えるかが重要です。

このブログでは、孤独と戦う受験生や社会人になってから学び直している人、子供に勉強を教えるお母さんお父さんに向けてなるべく途中式を飛ばさずに解説をまとめています。

少しでも助けになると幸いです。
LINE無料相談こちらをクリック

【組合せ】『「YOKOHAMA」を並べる』文字を並べる問題

  • URLをコピーしました!

スタサプ高校・大学講座

14日間無料体験 >>

目次

文字列の場合の数

今回は、文字列を題材にした組合せの問題です。

組合せの問題の中で、\(YOKOHAMA\), \(TOUHOKU\) のように文字列の並び方を題材にしたものは頻出となっています。

今回は、\(YOKOHAMA\) という文字列を扱いますが、\(O\) や \(A\) が複数個ありますね。そこをどう処理していくかがポイントになります。

順列と組合せの違いを明確化できていないと、応用問題に対応することが少し難しくなります。不安な方はまずこちらをチェックしてみてください。

文字列の場合の数(問題)

\(YOKOHAMA\) の \(8\) 文字を横 \(1\) 列に並べて順列を作るとき、次の数を求めよ。

(1) 順列の総数
(2) \(AA\) と \(OO\) という並びをともに含む順列の数
(3) \(Y\), \(K\), \(H\), \(M\) がこの順に並ぶ順列の数

文字列の場合の数(答案の例)

(1) 順列の総数

\(\displaystyle\frac{8!}{2!2!}=\frac{40320}{4}=10080\)

(別解)
\({}_8C_2\times {}_6C_2\times 4!=10080\)

(2) \(AA\) と \(OO\) という並びをともに含む順列の数

\(6!=6\times 5\times 4\times 3\times 2\times 1=720\)

(3) \(Y\), \(K\), \(H\), \(M\) がこの順に並ぶ順列の数

\({}_8C_4\times {}_4C_2\times {}_2C_2=420\)

理系大学レベル別おすすめ数学テキスト
>>

文字列の場合の数(解説

(1) 「順列の総数」

まず、全て違う文字だとして考えてみると、

\(Y\), \(K\), \(H\), \(M\), \(O_1\), \(O_2\), \(A_1\), \(A_2\)

となりますね。

\(8\) 個の文字の順列なので、\(8!=8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=40320\)

となりますが、実際は \(O_1\) と \(O_2\), \(A_1\) と \(A_2\) は同じ文字なので区別するのはおかしいのです。

例えば、

\(Y\), \(O_2\), \(K\), \(O_1\), \(H\), \(A_1\), \(M\), \(A_2\)

\(Y\), \(O_1\), \(K\), \(O_2\), \(H\), \(A_1\), \(M\), \(A_2\)

のように、\(O_1\) と \(O_2\) の位置を逆にしてみても、\(2\) つは同じ \(YOKOHAMA\) ですよね。

よって、この区別して数えている分を削り、\(\displaystyle\frac{8!}{2!}=\frac{40320}{2}=20160\) となります。

また、 \(A_1\), \(A_2\) にも同様のことが言えるので、\(\displaystyle\frac{8!}{2!2!}=\frac{{}_8P_2}{2!2!}=\frac{40320}{4}=10080\) となるのです。

(別解)

\({}_8C_2\times {}_6C_2\times 4!=10080\)

上記のように、\(O\) \(2\) つと\(A\) \(2\) つは組み合わせで計算し、残りの \(4\) つは順列で計算するという方法でも求めることができます。

理解しやすい方で解きましょう。

(2) 「\(AA\) と \(OO\) という並びをともに含む順列の数」

\(AA\) をまとめて \(A’\), \(OO\) をまとめて \(O’\) で表すと、

f:id:smohisano:20210725113411p:plain

となりますね。まず、\(A’\), \(O’\), \(Y\), \(K\), \(H\), \(M\) の並び方を求めてみると、

\(6!=6\times 5\times 4\times 3\times 2\times 1=720\)

となります。

本来であれば、このあと隣り合った \(A\) と \(A\) 、 \(O\) と \(O\) の入れ替えを考えるのですが、今回はお分かりの通り、入れ替えても \(AA\) と \(OO\) になりますね。よって、別パターンとして入れ替えの場合を考える必要がないため、\(720\) がそのまま答えとなります。

(3) 「\(Y\), \(K\), \(H\), \(M\) がこの順に並ぶ順列の数」

この問題を解くポイントは、\(Y\), \(K\), \(H\), \(M\) が入るべきところをいったん空白にして考えるということです。

今回は、\(Y\), \(K\), \(H\), \(M\) を \(X\) という仮の文字で置いてみます。そうすると、以下の図にようなイメージになります。

f:id:smohisano:20210725113912p:plain

つまり、 \(X\) \(4\) 個、 \(O\) \(2\) 個、 \(A\) \(2\) 個を先に並べ、並べ終わった後で \(X\) の部分に左から \(Y\), \(K\), \(H\), \(M\) を当てはめていくのです。

よって、\(X\) \(4\) 個に \(O\) \(2\) 個, \(A\) \(2\) 個の並び方の総数を計算すれば良いので、

\({}_8C_4\times {}_4C_2\times {}_2C_2=420\)

となります。

勝手に自分でアルファベットを決めてしまって大丈夫なの?と思う方もいるかもしれません。

今回はそれで大丈夫なのです。

なぜなら、問題文ですでに順番が指定されているアルファベットたちですので、それぞれの \(X\) には \(Y\), \(K\), \(H\), \(M\) の順番でしか入れようがないからです。

問題によってさまざまですが、確率の問題は必ず何かしらの確定情報が与えられています。

たとえば、両端が \(Y\) と \(K\)になっている、 \(O\) と \(O\) は隣り合っているなどです。

まずは問題文の言われたとおりにアルファベットを扱い、その状態を崩さないためにはどう計算すればいいかを考えましょう。

おわりに

今回は、文字列を題材にした組合せの問題でした。

さいごまで記事を読んでいただきありがとうございました!

数学は、時間をかけて勉強すれば誰でも成績を上げられます!

しかし、時間には限りがあります。

アプリや塾/家庭講師など自分に合ったサポートを取り入れることで、限りある時間を効率的に使うことができます。

自走して学習が進められる人
日々の悩みを解決できるコーチング面談や日々の学習計画を見直せるサポートがおすすめです。

自走して学習が進められない人
毎週講師による授業をしっかり受けて、宿題を設定してもらうサポートがおすすめです。

>>

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメントはお気軽に♪

コメント一覧 (1件)

コメントする

目次