メニュー
スタディサプリ
カテゴリー
yu-to
オンライン家庭教師/ブログ運営
本ブログを運営しているyu-toと申します。

勉強は”孤独”です。
塾に行っていても、友達と勉強していても、最後はどれだけ孤独と戦えるかが重要です。

このブログでは、孤独と戦う受験生や社会人になってから学び直している人、子供に勉強を教えるお母さんお父さんに向けてなるべく途中式を飛ばさずに解説をまとめています。

少しでも助けになると幸いです。
LINE無料相談こちらをクリック

【データの分析】『分散』データAの分散とデータBの分散から全体データの分散を求める問題

  • URLをコピーしました!
目次

2つの分散から1つの分散を求める

今回は、2つのグループの平均値と分散が与えられているとき、その2つを合わせた全体集合の平均値を分散を求める問題です。

平均値は代表値の1つであり、分散はデータの散らばりを表しています。データの散らばりを計算する方法はいくつか種類がありますが、その中でも分散は、各データが平均値からどれくらい離れているか(散らばっているか)を表す値です。

代表値を扱った問題にチャレンジしてみたい方はこちらをチェック

平均値と分散/標準偏差

大きさ \(n\) のデータの値を \(x_1\), \(x_2\), \(\cdots\), \(x_n\) とするとき、

$$\bar{x}=\displaystyle\frac{1}{n}(x_1+x_2+\cdots +x_n)$$

大きさ \(n\) のデータの値を \(x_1\), \(x_2\), \(\cdots\), \(x_n\) とするとき、

分散 \(s^2\)

 $$s^2=\displaystyle\frac{1}{n}\{(x_1-\bar{x})^2+(x_2-\bar{x})^2+\cdots +(x_n-\bar{x})^2\}$$

また、\(s^2=\bar{x^2}-(\bar{x})^2\) で計算できる。

標準偏差 \(s\)

  \begin{eqnarray} s &=& \sqrt{\displaystyle\frac{1}{n}\{(x_1-\bar{x})^2+(x_2-\bar{x})^2+\cdots +(x_n-\bar{x})^2\}}\\ &=& \sqrt{\bar{x^2}-(\bar{x})^2} \end{eqnarray}

分散や標準偏差の計算が不安な方はこちらをチェック!

分散と標準偏差の違いがピンとこない方はこちらをチェック!

平均値・分散の問題

ある集団はAとBの2つのグループで構成されている。データを集計したところ、それぞれのグループの個数、平均値、分散は右の表のようになった。このとき、集合全体の平均値と分散を求めよ。

グループ個数平均値分散
A201624
B601228

平均値・分散の問題(答案の例)

 グループ A の総和は、\(16\times 20=320\)
 グループ B の総和は、\(12\times 60=720\)

したがって、全データの総和は、\(320+720=1040\) 。以上のことから平均を求める。

$$1040\div 80=\displaystyle\frac{1040}{80}=13(平均値)$$

グループ A の変量を \(a\) でデータの値を、

 \(a_1\), \(a_2\), \(\cdots\), \(a_{20}\)

グループ B の変量を \(b\) でデータの値を、

 \(b_1\), \(b_2\), \(\cdots\), \(b_{60}\)

とおき、それぞれの分散を \(s_a\), \(s_b\) とおくと、\(s_a=\bar{a^2}-(\bar{a})^2\) より

\begin{eqnarray} \bar{a^2} &=& s_a+(\bar{a})^2\\ &=& 24+16^2=280 \end{eqnarray}

ここで、\(\bar{a^2}=\displaystyle\frac{1}{20}(a^2_1+a^2_2+\cdots +a^2_{20})\) より

$$a^2_1+a^2_2+\cdots +a^2_{20}=280\times 20=5600$$

同様にして、\(s_b=\bar{b^2}-(\bar{b})^2\) より

\begin{eqnarray}  \bar{b^2} &=& s_b+(\bar{b})^2\\ &=& 28+12^2=172 \end{eqnarray}

ここで、\(\bar{b^2}=\displaystyle\frac{1}{60}(b^2_1+b^2_2+\cdots +b^2_{60})\) より

$$b^2_1+b^2_2+\cdots +b^2_{60}=172\times 60=10320$$

以上のことから、

$$a^2_1+a^2_2+\cdots +a^2_{20}+b^2_1+b^2_2+\cdots +b^2_{60}=5600+10320$$

よって、

\begin{eqnarray} \displaystyle\frac{1}{80}\times (a^2_1+a^2_2+\cdots +a^2_{20}+b^2_1+b^2_2+\cdots +b^2_{60}) &=& \displaystyle\frac{1}{80}\times (5600+10320)\\ &=& \displaystyle\frac{5600+10320}{80}\\ &=& 70+129=199 \end{eqnarray}

したがって、\(199-169=30\)(分散)

理系大学レベル別おすすめ数学テキスト
>>

平均値・分散の問題(解説)

データの総和は、(平均値)\(\times\)(個数)で求めることが出来る。

よって、

 グループ A の総和は、\(16\times 20=320\)
 グループ B の総和は、\(12\times 60=720\)

したがって、全データの総和は、\(320+720=1040\)。以上のことから平均を求める。

$$1040\div 80=\displaystyle\frac{1040}{80}=13(平均値)$$

また、全体の分散は、全体のデータの変量を \(x\) とすると、

 (分散)\(=\bar{x^2}-(\bar{x})^2\)

となる。

\((\bar{x})^2=13^2=169\) なので、\(\bar{x^2}\) を求める必要がある。

$$\bar{x^2}=\displaystyle\frac{1}{80}(x^2_1+x^2_2+\cdots +x^2_{80})\cdots ※$$

と表すこともできる。

勝手に文字を出現させられないので、各文字の説明をしながら問題を解き進めて行きましょう!

グループ A の変量を \(a\) でデータの値を、

 \(a_1\), \(a_2\), \(\cdots\), \(a_{20}\)

グループ B の変量を \(b\) でデータの値を、

 \(b_1\), \(b_2\), \(\cdots\), \(b_{60}\)

とおくと、

$$x^2_1+x^2_2+\cdots +x^2_{80}=a^2_1+a^2_2+\cdots +a^2_{20}+b^2_1+b^2_2+\cdots +b^2_{60}$$

と表すことができる。それぞれの分散を \(s_a\), \(s_b\) とおくと、\(s_a=\bar{a^2}-(\bar{a})^2\) より

\begin{eqnarray} \bar{a^2} &=& s_a+(\bar{a})^2\\ &=& 24+16^2=280 \end{eqnarray}

ここで、\(\bar{a^2}=\displaystyle\frac{1}{20}(a^2_1+a^2_2+\cdots +a^2_{20})\) より

$$a^2_1+a^2_2+\cdots +a^2_{20}=280\times 20=5600$$

同様にして、\(s_b=\bar{b^2}-(\bar{b})^2\) より

\begin{eqnarray} \bar{b^2} &=& s_b+(\bar{b})^2\\ &=& 28+12^2=172 \end{eqnarray}

ここで、\(\bar{b^2}=\displaystyle\frac{1}{60}(b^2_1+b^2_2+\cdots +b^2_{60})\) より

$$b^2_1+b^2_2+\cdots +b^2_{60}=172\times 60=10320$$

以上のことから、

\begin{eqnarray} x^2_1+x^2_2+\cdots +x^2_{80} &=& a^2_1+a^2_2+\cdots +a^2_{20}+b^2_1+b^2_2+\cdots +b^2_{60}\\ &=& 5600+10320 \end{eqnarray}

よって、※ に当てはめると、

\begin{eqnarray} \bar{x^2} &=& \displaystyle\frac{1}{80}\times (5600+10320)\\ &=& \displaystyle\frac{5600+10320}{80}\\ &=& 70+129=199 \end{eqnarray}

したがって、(分散)\(=\bar{x^2}-(\bar{x})^2\)に当てはめると、\(199-169=30\)(分散)

おわりに

今回は、2つのグループの平均値と分散が与えられているとき、その2つを合わせた全体集合の平均値を分散を求める問題でした。

さいごまで記事を読んでいただきありがとうございました!

数学は、時間をかけて勉強すれば誰でも成績を上げられます!

しかし、時間には限りがあります。

アプリや塾/家庭講師など自分に合ったサポートを取り入れることで、限りある時間を効率的に使いましょう!

「専門家に数学の勉強法を相談!」

現状と目標は人それぞれです。それによって最適解も異なります。限られた時間の中で、自分だけの最適解を探すのは至難の業です…

現在、新年度キャンペーンでLINEで無料で相談できちゃいます!この機会にぜひ!

>>

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

質問や感想はコメントへ!

コメントする

目次